PABP enhances release factor recruitment and stop codon recognition during translation termination

نویسندگان

  • Alexandr Ivanov
  • Tatyana Mikhailova
  • Boris Eliseev
  • Lahari Yeramala
  • Elizaveta Sokolova
  • Denis Susorov
  • Alexey Shuvalov
  • Christiane Schaffitzel
  • Elena Alkalaeva
چکیده

Poly(A)-binding protein (PABP) is a major component of the messenger RNA-protein complex. PABP is able to bind the poly(A) tail of mRNA, as well as translation initiation factor 4G and eukaryotic release factor 3a (eRF3a). PABP has been found to stimulate translation initiation and to inhibit nonsense-mediated mRNA decay. Using a reconstituted mammalian in vitro translation system, we show that PABP directly stimulates translation termination. PABP increases the efficiency of translation termination by recruitment of eRF3a and eRF1 to the ribosome. PABP's function in translation termination depends on its C-terminal domain and its interaction with the N-terminus of eRF3a. Interestingly, we discover that full-length eRF3a exerts a different mode of function compared to its truncated form eRF3c, which lacks the N-terminal domain. Pre-association of eRF3a, but not of eRF3c, with pre-termination complexes (preTCs) significantly increases the efficiency of peptidyl-tRNA hydrolysis by eRF1. This implicates new, additional interactions of full-length eRF3a with the ribosomal preTC. Based on our findings, we suggest that PABP enhances the productive binding of the eRF1-eRF3 complex to the ribosome, via interactions with the N-terminal domain of eRF3a which itself has an active role in translation termination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Competition between Stimulators and Antagonists of Upf Complex Recruitment Governs Human Nonsense-Mediated mRNA Decay

The nonsense-mediated decay (NMD) pathway subjects mRNAs with premature termination codons (PTCs) to rapid decay. The conserved Upf1-3 complex interacts with the eukaryotic translation release factors, eRF3 and eRF1, and triggers NMD when translation termination takes place at a PTC. Contrasting models postulate central roles in PTC-recognition for the exon junction complex in mammals versus th...

متن کامل

Translation termination: new factors and insights.

In eukaryotes, translation termination requires two eukaryotic release factors, eRF1 and eRF3. eRF1 is required for recognition of the stop codon and eRF3 supports the polypeptide chain release in a GTP dependent manner. Recently, several new players in translation termination have been identified. The DEAD-box RNA helicase Dbp5 has been shown to support eRF1 in stop codon recognition, possibly...

متن کامل

Thermodynamic and Kinetic Insights into Stop Codon Recognition by Release Factor 1

Stop codon recognition is a crucial event during translation termination and is performed by class I release factors (RF1 and RF2 in bacterial cells). Recent crystal structures showed that stop codon recognition is achieved mainly through a network of hydrogen bonds and stacking interactions between the stop codon and conserved residues in domain II of RF1/RF2. Additionally, previous studies su...

متن کامل

GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination.

Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3. eRF1 recognizes each of the three stop codons (UAG, UAA, and UGA) and facilitates release of the nascent polypeptide chain. eRF3 is a GTPase that stimulates the translation termination process by a poorly characterized mechanism. In this study, we examined the functional importance of GTP hydrolysis by eRF3...

متن کامل

Two-step model of stop codon recognition by eukaryotic release factor eRF1

Release factor eRF1 plays a key role in the termination of protein synthesis in eukaryotes. The eRF1 consists of three domains (N, M and C) that perform unique roles in termination. Previous studies of eRF1 point mutants and standard/variant code eRF1 chimeras unequivocally demonstrated a direct involvement of the highly conserved N-domain motifs (NIKS, YxCxxxF and GTx) in stop codon recognitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016